Эндогенные и экзогенные факторы заболевания.

Геодинамические процессы, вызванные внутренними силами Земли и протекающие в ее недрах, называются эндогенными.

Они обусловлены энергией и действием сил тяжести, возникающих при вращении Земли, а проявляются в виде тектонических движений (поднятие и опускание земной коры, землетрясения, образование крупных элементов рельефа и т.п.), процессов магматиз-


ма (вулканизма), метаморфизма горных пород и формирования месторождений полезных ископаемых.

Движение тектонических плит - это грандиозный геологический процесс, ведущий к деформации верхних частей земной коры, но протекающий очень медленно. Поэтому в течение исторического времени движение континентов можно зафиксировать только с помощью особо точных измерений. Кроме того, движение плит вызывает эффекты, проявляющиеся в форме бедствий и катастроф.

Линии, по которым стыкуются плиты, - это эквивалент трещин в земной коре. Они называются «сдвигами» и представляют собой слабые места, через которые тепло и расплавленный камень, находящийся под корой, могут выйти наверх. Такое тепло способно согревать грунтовые воды, образовывать выходы пара и горячие источники. Иногда вода может нагреваться до тех пор, пока давление не достигает критической точки, после чего она вырывается на поверхность высоко в воздух. Так образуются гейзеры.

Вулканическая деятельность. В некоторых районах вверх по трещинам поднимается и застывает расплавленный камень. Новый расплавленный камень вскипает сквозь возвышенность отвердевшего камня и увеличивает ее высоту. Так образуется гора с центральным проходом, по которому расплавленная каменистая масса, или лава, может подниматься и оседать. Также она может затвердевать на более или менее длительный период, а затем плавиться снова. Этот процесс получил название магматизма. Магматизм - проявление глубинной активности Земли, он тесно связан с ее тепловыми процессами и тектонической эволюцией. В результате магматизма формируются горные породы внутри земли или вулканы, т.е. происходят излияния расплавленной магмы из глубин Земли на ее поверхность.

По степени активности вулканы могут быть действующими или недействующими. Если вулкан демонстрирует определенную активность в течение длительных периодов времени, он не очень опасен, хотя периодические извержения, в ходе которых потоки лавы изливаются наружу, вынуждают эвакуировать находящиеся поблизости населенные пункты.

Намного опаснее вулканы, длительное время пребывающие в неактивном состоянии. У таких вулканов центральный проход, по которому лава поднималась раньше, обычно затвердевает, и потому новые потоки лавы, поднимающиеся из глубин в период усиления активности, не находят себе прохода. Нарастающее давление приводит к тому, что верхушка вулкана прорывается. При этом происходит резкий, неожиданный выброс газа, пара, твердых камней и раскаленной лавы. Если до этого вулкан долгое время оставался неактивным и возле него возникли людские поселения, то последствия из-


вержения могут быть катастрофическими. В результате извержения Везувия в 79 г. н.э. были полностью уничтожены города Помпеи и Геркуланум, располагавшиеся на его южном склоне.

Самое крупное вулканическое извержение произошло на острове Кракатау 27 августа 1883 г., в результате которого остров был практически полностью разрушен. В воздух оказалось выброшено около 21 км 3 вулканического вещества. Пепел выпал на площади 800 тыс. км 2 и затемнил окружающий район на два с половиной дня. Пыль достигла стратосферы и распространилась по всей Земле, вызывая эффектные закаты на протяжении почти двух лет. Звук взрыва был слышен на расстоянии 1/13 земного шара, а сила извержения в 26 раз превосходила мощность самой современной водородной бомбы. Кроме того, взрыв вызвал волну цунами, которая достигла высоты 36 метров и уничтожила 163 деревни и унесла жизни почти 40 тысяч человек.

Землетрясения. Еще более губительным следствием движения тектонических плит являются землетрясения.

Землетрясениями называют подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний.

Их сложно предсказать, так как они зарождаются по разным причинам и на разной глубине. Небольшие тектонические поднятия и опускания образуются в результате процессов, происходящих внутри земной коры на глубине 10-20 км, а самые глубокие очаги землетрясений локализованы на глубине 700 км. В основном землетрясения происходят на границах соединения тектонических плит, которые могут подниматься или опускаться друг относительно друга, а также двигаться в разных направлениях.

Само землетрясение продолжается лишь несколько минут и состоит из нескольких толчков. Но за это время оно может нанести огромный ущерб обширному району. Сила землетрясений характеризуется по специальной 12-балльной шкале, предложенной в 1935 г. американским сейсмологом Ч. Рихтером и носящей его имя. Каждая последующая цифра этой шкалы соответствует десятикратному увеличению количества энергии, высвобождаемой при землетрясении. Так, разрушение зданий начинается при 5 баллах. Землетрясение в 7 баллов считается сильным, а в 8 баллов и выше - катастрофическим.

В историческом масштабе самое сильное землетрясение произошло в Китае в 1556 г., когда одновременно погибло 830 тыс. человек. В Западной Европе очень крупным было землетрясение 1755 г.


в Португалии. При этом полностью была разрушена столица Португалии город Лиссабон, погибло 60 тыс. человек. Часто случаются землетрясения в Сан-Франциско, который стоит на тектоническом разломе. На территории бывшего СССР также достаточно много сейсмически опасных зон. В 1988 г. произошло землетрясение в Армении, при котором погибло свыше 20 тыс. человек и более 500 тыс. остались без крова. А в 1995 г. сильнейшее землетрясение полностью разрушило город Нефтегорск на Сахалине.

Экзогенные процессы

К экзогенным относятся геодинамические процессы, которые происходят на поверхности Земли или на небольшой глубине в земной коре и обусловлены энергией солнечного излучения, гравитационной силой и жизнедеятельностью организмов.

Экзогенными являются следующие процессы: выветривание, заболачивание, оползни, лавины, обвалы, криогенные процессы, деятельность водных потоков, морей, озер и ледников. Внешние экзогенные процессы происходят на поверхности Земли при давлениях и температурах, близких к нормальным, поэтому они доступнее для изучения, чем эндогенные процессы.

Выветривание. Основу всех экзогенных процессов составляет выветривание - процесс механического разрушения и химического изменения горных пород и минералов в условиях земной поверхности, происходящий под влиянием различных атмосферных явлений, грунтовых и поверхностных вод, жизнедеятельности растительных и животных организмов и продуктов их разложения. Выветривание имеет большое значение, поскольку с ним тесно связан процесс почвообразования, т.е. зарождение и формирование почвы.

Флювиальные процессы. Преобразованию земной поверхности в огромной мере способствуют также флювиальные процессы - совокупность процессов, осуществляемых текучими поверхностными водными потоками. Результатом флювиальных процессов является размыв водными потоками земной поверхности в одних местах и одновременный перенос и отложение продуктов размыва в других. Флювиальные процессы развиваются в пределах речных бассейнов, в которые входят речные, овражно-балочные и склоновые системы. Главным элементом этих процессов являются реки - водные потоки, текущие в естественных условиях и питающиеся за счет поверхностного и подземного стока со своих бассейнов.

Гляциальные процессы. К экзогенным относятся также и гляци-альные процессы, связанные с деятельностью льда, т.е. современным и прошлым оледенением территории. Такие процессы проис-


ходят в условиях длительного существования большого количества льда в пределах участка земной поверхности, в первую очередь в виде ледников - движущихся скоплений льда. Эрозионная деятельность ледников сводится к выпахиванию коренного ложа ледника обломками горных пород, к формированию специфических отложений в виде скопления несортированных обломков горных пород, переносимых или отложенных ледниками образований. В результате таяния ледников образуются мощные водные потоки, которые формируют флювиогляциальные отложения и рельеф.

Гравитационные процессы. Наконец, в пределах Мирового океана распространены гравитационные процессы, в возникновении и развитии которых основная роль принадлежит силе тяжести. В настоящее время среди гравитационных процессов дна Мирового океана ученые особо вьщеляют процесс медленного сползания или оплывания толщ осадков на относительно пологих склонах, подводные оползни, донные и постоянные поверхностные течения и т.д.

Литература для самостоятельного изучения

1. Азимов А. Выбор катастроф. СПб., 2001.

2. Будыко М.И. Климат в прошлом и будущем. Л., 1980.

3. Войткевич Г. В. Рождение Земли. Р-н-Д, 1996.

4. Гаврилов В.П. Путешествие в прошлое Земли. М., 1987.

5. Гангус А.А. Тайна земных катастроф. М., 1985.

6. Грушинский Н.П. Круглая ли Земля? М., 1989.

7. Зигель Ф.Ю. Планета Земля, ее прошлое, настоящее и будущее. М., 1974.

8. Израилев В.М. Земля - планета парадоксов. М., 1991.

9. Криволуцкий А.Е. Голубая планета Земля среди планет. М., 1985.

10. Львович М.И. Вода и жизнь. М., 1986.

11. Максаковский В.П. Географическая культура. М., 1998.

12. Монин А.С. История земли. М., 1977.

13. Мукитанов U.K. От Страбона до наших дней. Эволюция географических представлений и идей. М., 1985.

14. Рингвуд А.Е. Происхождение Земли и Луны. М., 1982.

15. Сорохтин О.Г., Ушаков СА. Глобальная эволюция Земли. М., 1991.

16. Ушаков С.А., Ясаманов Н.А. Дрейф материков и климат Земли. М., 1984.

1. ЭКЗОГЕННЫЕ И ЭНДОГЕННЫЕ ПРОЦЕССЫ

Экзогенные процессы – геологические процессы, происходящие на поверхности Земли и в самых верхних частях земной коры (выветривание, эрозия, деятельность ледников и др.); обусловлены главным образом энергией солнечной радиации, силой тяжести и жизнедеятельностью организмов.

Эрозия (от лат. erosio – разъедание) – разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия), экзарация (ледниковая эрозия), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия, но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную. Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа. По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Работа ледников – рельефообразующая деятельность горных и покровных ледников, состоящая в захвате частиц горных пород движущимся ледником, переносе и отложении их при таянии льда.

Эндогенные процессы Эндогенные процессы – геологические процессы, связанные с энергией, возникающей в недрах твердой Земли. К эндогенным процессам относятся тектонические процессы, магматизм, метаморфизм, сейсмическая активность.

Тектонические процессы – образование разломов и складок.

Магматизм – термин, объединяющий эффузивные (вулканизм) и интрузивные (плутонизм) процессы в развитии складчатых и платформенных областей. Под магматизмом понимают совокупность всех геологических процессов, движущей силой которых является магма и её производные.

Магматизм является проявлением глубинной активности Земли; он тесно связан с ее развитием, тепловой историей и тектонической эволюцией.

Выделяют магматизм:

геосинклинальный

платформенный

океанический

магматизм областей активизации

По глубине проявления:

абиссальный

гипабиссальный

поверхностный

По составу магмы:

ультраосновной

основной

кислый

щелочной

В современную геологическую эпоху магматизм особенно развит в пределах Тихоокеанского геосинклинального пояса, срединно-океанических хребтов, рифовых зон Африки и Средиземноморья и др. С магматизмом связано образование большого количества разнообразных месторождений полезных ископаемых.

Сейсмическая активность – это количественная мера сейсмического режима, определяемая средним числом очагов землетрясений в некотором диапазоне энергетической величины, которые возникают на рассматриваемой территории за определенное время наблюдения.

2. ЗЕМЛЕТРЯСЕНИЯ

геологический земной кора эпейрогенический

Наиболее отчетливо действие внутренних сил Земли обнаруживается в явлении землетрясений, под которыми понимаются сотрясения земной коры, вызванные смещениями горных пород в недрах Земли.

Землетрясение – явление достаточно распространенное. Оно наблюдается на многих участках материков, а также на дне океанов и морей (в последнем случае говорят о «моретрясении»). Количество землетрясений на земном шаре достигает нескольких сотен тысяч в год, т. е. в среднем совершается одно два землетрясения в минуту. Сила землетрясения различна: большинство из них улавливается только высокочувствительными приборами -сейсмографами, другие ощущаются человеком непосредственно. Количество последних достигает двух-трех тысяч в год, причем распределяются они очень неравномерно – в одних районах такие сильные землетрясения очень часты, а в других необычайно редки или даже практически отсутствуют.

Землетрясения можно подразделить на эндогенные, связанные с процессами, происходящими в глубине Земли, и экзогенные, зависящие от процессов, происходящих вблизи поверхности Земли.

К зндогенным землетрясениям относятся вулканические землетрясения, вызванные процессами извержения вулканов, и тектонические, обусловленные перемещением вещества в глубоких недрах Земли.

К экзогенным землетрясениям относятся землетрясения, происходящие в результате подземных обвалов, связанных с карстовыми и некоторыми другими явлениями, взрыво газов и т.п. Экзогенные землетрясения могут вызываться также процессами, происходящими на самой поверхности Земли: обвалами скал, ударами метеоритов, падением воды с большой высоты и другими явлениями, а также факторами, связанными с деятельностью человека (искусственными взрывами, работой машин и т.п.).

Генетически землетрясения можно классифицировать следующим образом:. Естественные

Эндогенные: а) тектонические, б) вулканические. Экзогенные: а) карстово-обвальные, б) атмосферные в) от ударов волн, водопадов и т. п.. Искусственные

а) от взрывов, б) от артиллерийской стрельбы, в) от искусственного обрушения горных пород, г) от транспорта и т. п.

В курсе геологии рассматриваются только землетрясения, связанные с эндогенными процессами.

В тех случаях, когда сильные землетрясения происходят в густонаселенных районах, они наносят огромный вред человеку. По бедствиям, причиняемым человеку, землетрясения не могут сравниться ни с каким другим явлением природы. Так например, в Японии во время землетрясения 1 сентября 1923 г., продолжавшегося всего несколько секунд, было полностью уничтожено 128266 домов и 126233 частично разрушено, погибло около 800 судов, были убиты и пропали без вести 142 807 человек. Более 100 тыс. человек получили ранения.

Описать явление землетрясения необычайно трудно, так как весь процесс длится всего несколько секунд или минут, и человек не успевает воспринять все многообразие перемен, совершающихся за это время в природе. Внимание фиксируется обычно только на тех колоссальных разрушениях, которые появляются в результате землетрясения.

Вот как описывает М. Горький землетрясение, происшедшее в Италии в 1908 г., очевидцем которого он был: «Земля глухо гудела, стонала, горбилась под ногами и волновалась, образуя глубокие трещины – как будто в глубине проснулся и ворочается веками дремавший некий огромный червь… Вздрогнув и пошатываясь, здания наклонялись, по их белым стенам, как молнии, змеились трещины и стены рассыпались, засыпая узкие улицы и людей среди них… Подземный гул, грохот камней, визг дерева заглушают вопли о помощи, крики безумия. Земля волнуется, как море, сбрасывая с груди своей дворцы, лачуги, храмы, казармы, тюрьмы, школы, каждым содроганием уничтожая сотни и тысячи женщин, детей, богатых и бедных. ».

В результате этого землетрясения был разрушен г. Мессина и ряд других населенных пунктов.

Общая последовательность всех явлений при землетрясении была изучена И. В. Мушкетовым во время крупнейшего из среднеазиатских Алма-Атинского землетрясения 1887 г.

27 мая 1887 г. вечером, как писали очевидцы, никаких признаков землетрясения не было, но домашние животные вели себя неспокойно, не принимали корма, рвались с привязи и т. п. Утром 28 мая в 4 часа 35 минут послышался подземный гул и довольно сильный толчок. Сотрясение продолжалось не более секунды. Через несколько минут гул возобновился, он напоминал глухой звон мощных многочисленных колоколов или грохот проезжающей тяжелой артиллерии. За гулом последовали сильные сокрушительные удары: в домах сыпалась штукатурка, вылетали стекла, рушились печи, падали стены и потолки: улицы наполнились серой пылью. Наиболее сильно пострадали массивные каменные постройки. У домов, расположенных по меридиану, вываливались северные и южные стены, тогда как западные и восточные сохранялись. В первую минуту казалось, что города больше не существует, что разрушены все здания без исключения. Удары и сотрясения, но менее сильные, продолжались в течение всего дня. Многие поврежденные, но ранее устоявшие дома, падали от этих более слабых толчков.

В горах образовались обвалы и трещины, по которым местами на поверхность вышли потоки подземной воды. Глинистая почва на склонах гор, и до того уже сильно смоченная дождями, начала ползти, ч загромождая русла рек. Подхваченная потоками вся эта масса земли, щебня, валунов Б виде густых селевых потоков устремилась к подножию гор. Один из таких потоков протянулся на 10 км при ширине 0,5 км.

Разрушения в самом г. Алма-Ата были огромны: из 1800 домов уцелели единичные дома, но количество человеческих жертв было относительно невелико (332 человека).

Многочисленные наблюдения показали, что в домах сначала (на какую-то долю секунды раньше) разваливались южные стены, а затем уже северные, что колокола в Покровской церкви (в северной части города) ударили через несколько секунд после разрушений, происшедших в южной части города. Все это свидетельствовало, что центр землетрясения находился к югу от города.

Большинство трещин в домах было наклонено также на юг или точнее на юго-восток (170°) под углом 40-60°. Анализируя направление трещин, И. В. Мушкетов пришел к выводу, что источник волн землетрясения располагался на глубине 10- 12 км п в 15 км к югу от г. Алма-Ата.

Глубинный центр, или очаг землетрясения, называется гипоцентром. В плане он очерчивается как округлая или овальная площадь.

Область, расположенная на поверхности Земли над гипоцентром носит название эпицентра. Она характёризуётся максимальными разрушениями, причем многие предметы здесь смещаются вертикально (подпрыгивают), и трещины в домах располагаются очень круто, почти вертикально.

Площадь эпицентра Алма-Атинского землетрясения определялась в 288 км² (36 *8 км), а область, где землетрясение было наиболее сильным, охватила площадь в 6000 км². Такая область получила название плейстосейстовой («плейсто» – наибольший и « сейстос» – сотрясенный).

Алма-Атинское землетрясение продолжалось не один день: вслед за толчками 28 мая 1887 г. в течение более двух лет происходили толчки меньшей силы с. интервалами сначала в несколько часов, а затем дней. Всего за два года было свыше 600 ударов, все более и более ослабевающих.

В истории Земли описаны землетрясения с еще большим количеством толчков. Так, например, в 1870 г. в провинции Фокида в Греции начались толчки, которые продолжались в течение трех лет. В первые три дня толчки следовали через 3 минуты, в течение первых пяти месяцев произошло около 500 тыс. толчков, из них 300 обладали разрушительной силой и следовали друг за другом со средним интервалом в 25 секунд. За три года всего произошло свыше 750 тыс. ударов.

Таким образом, землетрясение происходит не в результате единовременного акта, совершающегося на глубине, но вследствие какого-то длительно развивающегося процесса движения материи во внутренних частях земного шара.

Обычно за начальным крупным толчком следует цепь более мелких толчков, и весь этот период можно назвать периодом землетрясения. Все толчки одного периода исходят из общего гипоцентра, который иногда в процессе развития может смещаться, в связи с чем смещается и эпицентр.

Это хорошо видно на ряде примеров кавказских землетрясений, а также землетрясения в районе г. Ашхабада, которое произошло 6 октября 1948 г. Основной толчок последовал в 1 час 12 минут без предварительных толчков и продолжался 8-10 секунд. За это время в городе и окрестных селениях произошли огромные разрушения. Одноэтажные дома из кирпича-сырца рассыпались, и крыши накрыли эти груды кирпича, домашней утвари и т. п. У более прочно построенных домов вылетели отдельные стены, развалились трубы и печи. Интересно отметить, что здания круглой формы (элеватор, мечеть, собор и др.) противостояли толчку лучше, чем обычные четырехугольные постройки.

Эпицентр землетрясения располагался в 25 км. к юго-востоку от Ашхабада, в районе совхоза «Карагаудан». Эпицентральная область оказалась вытянутой в северо-западном направлении. Гипоцентр располагался на глубине 15-20 км. Длина плейстосейстовой области достигала 80 км, а ширина- 10 км. Период Ашхабадского землетрясения был длителен и состоял из множества (более 1000) толчков, эпицентры которых располагались к северо-западу от главного в пределах узкой полосы, расположенной в предгорьях Копет-Дага

Гипоцентры всех этих повторных толчков находились на той же малой глубине (порядка 20-30 км), что и гипоцентр основного толчка.

Гипоцентры землетрясений могут располагаться не только под поверхностью материков, но и под дном морей и океанов. При моретрясениях разрушения приморских городов бывают тоже весьма значительными и сопровождаются человеческими жертвами.

Сильнейшее землетрясение произошло в 1775 г. в Португалии. Плейстосейстовая область этого землетрясения охватила огромную площадь; эпицентр располагался под дном Бискайского залива вблизи столицы Португалии г. Лиссабона, пострадавшего наиболее сильно.

Первый толчок произошел днем 1 ноября и сопровождался страшным грохотом. По свидетельству очевидцев, земля на целый локоть то поднималась вверх, то опускалась. Дома падали со страшным треском. Огромный монастырь на горе так сильно качался из стороны в сторону, что каждую минуту грозил рухнуть. Толчки продолжались 8 минут. Через несколько часов землетрясение возобновилось.

Мраморная набережная провалилась и ушла под воду. В образовавшуюся водяную воронку были увлечены люди и корабли, стоявшие у берега. После землетрясения глубина залива на месте набережной достигала 200 м.

Море вначале землетрясения отступило, но затем огромная волна высотой 26 м обрушилась на берег и затопила побережье на ширину до 15 км. Таких волн, следовавших одна за другой, было три. То, что уцелело от землетрясения, было смыто и унесено в море. Только в гавани Лиссабона было уничтожено или повреждено свыше 300 судов.

Волны Лиссабонского землетрясения прошли через весь Атлантический океан: у Кадикса их высота достигала 20 м, на Африканском побережье, у берегов Танжера и Марокко – 6 м, на о-вах Фуншал и Мадера -до 5 м. Волны пересекли Атлантический океан и ощущались у берегов Америки на о-вах Мартиника, Барбадос, Антигуа и др. При Лиссабонском землетрясении погибло свыше 60 тыс. человек.

Подобные волны довольно часто возникают при моретрясениях, они называаются цуцнами. Скорость распространения этих волн колеблется от 20 до 300 м/сек в зависимости:от глубины океана; высота волн достигает 30 м.

Осушение берега перед цунами длится обычно несколько минут и в исключительных случаях достигает чяса. Возникают цунами только при тех моретрясениях, когда происходит провал или поднятие определенного участка дна.

Появление цунами и волн отлива объясняется следующим образом. В эпицентральной области из-за деформации дна образуется волна давления, распространяющаяся вверх. Море в этом месте только сильно вспучивается, на поверхности образуются кратковременные течения, расходящиеся во всех направлениях, или «вскипает» с подбрасыванием воды вверх на высоту до 0,3м. Все это сопровождается гулом. Затем волна давления преобразуется на поверхности в волны цунами, разбегающиеся в разных направлениях. Отливы перед цунами объясняются тем, что вначале вода устремляется в подводный провал, из которого затем выталкивается в эпицентральную область.

В случае, когда эпицентры приходятся на густонаселенные районы, землетрясения приносят огромные бедствия. Особенно разрушительными были землетрясения Японии, где за 1500 лет зафиксировано 233 крупных землетрясения с количеством толчков, превышающим 2 млн.

Большие бедствия причиняют землетрясения в Китае. Во время катастрофы 16 декабря 1920 г. в районе Кансу погибло свыше 200 тыс. человек, причем главной причиной гибели были обвалы жилищ, вырытых в лёссе. Землетрясения исключительной силы происходили в Америке. При землетрясении в районе Риобамба в 1797 г. погибло 40 тыс. человек и было разрушено 80% зданий. В 1812 г. город Каракас (Венесуэла) был разрушен полностью в течение 15 секунд. Неоднократно почти полностью разрушался г. Консепсион в Чили, Сильно пострадал г. Сан-Франциско в 1906 г. В Европе наибольшие разрушения наблюдались после землетрясения в Сицилии, где в 1693 г. было уничтожено 50 селений и погибло свыше 60 тыс. человек.

На территории СССР наиболее разрушительными были землетрясения на юге Средней Азии, в Крыму (1927 г.) и на Кавказе. Особенно часто страдал от землетрясений г. Шемаха в Закавказье. Он разрушался в 1669, 1679, 1828, 1856, 1859, 1872, 1902 гг. До 1859 г. город Шемаха был губернским центром Восточного Закавказья, но из-за землетрясения столицу пришлось перенести в Баку. На рис. 173 показано размещение эпицентров Шемахинских землетрясений. Так же, как и в Туркмении, они располагаются вдоль определенной линии, вытянутой в северо-западном направлении.

При землетрясениях происходят существенные изменения на поверхности Земли, выражающиеся в образовании трещин, провалов, складок, поднятии отдельных участков на суше, в образовании островов на море и т. п. Эти нарушения, называемые сейсмическими, часто способствуют образованию мощных обвалов, осыпей, оползней, оплывин и селевых потоков в горах, появлению новых источников, прекращению старых, образованию грязевых сопок, газовых выбросов и др. Нарушения, образующиеся после землетрясений называютсяпостсейсмическими.

Явления. связанные с землетрясениями как на поверхности Земли, так и в ее недрах, называются сейсмическими явлениями. Наука, изучающая сейсмические явления, называется сейсмологией.

3. ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск (металлический, полуметаллический и неметаллический – алмазный, стеклянный, жирный, восковой, шелковистый, перламутровый и др.) обусловлен количеством отражаемого от поверхности минерала света и зависит от его показателя преломления. По прозрачности минералы разделяются на прозрачные, полупрозрачные, просвечивающие в тонких осколках и непрозрачные. Количественное определение светопреломления и светоотражения возможно только под микроскопом. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода. В меньшей степени это справедливо и для минерала корунда (Al2O3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет- простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту, который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины, сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность – весьма совершенная, совершенная, средняя (ясная), несовершенная (неясная) и весьма несовершенная – выражается в способности минералов раскалываться по определённым направлениям. Излом (ровный ступенчатый, неровный, занозистый, раковистый и др.) характеризуют поверхности раскола минерала, произошедшего не по спайности. Например, кварц и турмалин, поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость – сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1)

ШКАЛА ТВЕРДОСТИ МООСА

Плотность и Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см3.

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

Пироэлектричество. Некоторые минералы, например турмалин, каламин и др., при нагревании или охлаждении электризуются. Это явление можно наблюдать с помощью опыления охлаждающегося минерала смесью порошков серы и сурика. При этом сера покрывает положительно заряженные участки поверхности минерала, а сурик – участки с отрицательным зарядом.

Магнитность – это свойство некоторых минералов действовать на магнитную стрелку или притягиваться магнитом. Для определения магнитности используют магнитную стрелку, помещенную на остром штативе, или магнитную подковку, брусок. Очень удобно также пользоваться магнитной иглой или ножом.

При испытании на магнитность возможны три случая:

а) когда минерал в естественном виде («сам по себе») действует на магнитную стрелку,

б) когда минерал становится магнитным лишь после прокаливания в восстановительном пламени паяльной трубки

в) когда минерал ни до, ни после прокаливания в восстановительном пламени магнитности не проявляет. Для прокаливания восстановительном пламени нужно брать мелкие кусочки величиной 2-3 мм.

Свечение. Многие минералы, не светящиеся сами по себе, начинают светиться при некоторых специальных условиях.

Различают фосфоресценцию, люминесценцию, термолюминесценцию и триболюминесценцию минералов. Фосфоресценция-способность минерала светиться после воздействия на него теми или другими лучами (виллемит). Люминесценция – способность светиться в момент облучения (шеелит при облучении ультрафиолетовыми и катодными луча кальцит и др.). Термолюминесценция – свечение при нагревании (флюорит, апатит).

Триболюминесценция – свечение в момент царапания иглой или раскалывания (слюды, корунд).

Радиоактивность. Многие минералы, содержащие такие элементы как ниобий, тантал, цирконий, редкие земли, уран, торий часто имеют довольно значительную радиоактивность, легко обнаруживаемую даже бытовыми радиометрами, которая может служить важным диагностическим признаком.

Для проверки радиоактивности сначала измеряют и записывают величину фона, затем минерал подносят, возможно, ближе к детектору прибора. Увеличение показаний более чем на 10-15% может служить показателем радиоактивности минерала.

Электропроводность. Целый ряд минералов обладает значительной электропроводностью, которая позволяет их однозначно отличить от похожих минералов. Может проверяться обычным бытовым тестером.

ЭПЕЙРОГЕНИЧЕСКИЕ ДВИЖЕНИЯ ЗЕМНОЙ КОРЫ

Эпейрогенические движения – медленные вековые поднятия и опускания земной коры, не вызывающие изменения первичного залегания пластов. Эти вертикальные движения имеют колебательный характер и обратимы, т.е. поднятие может сменится опусканием. Среди этих движений различают:

Современные, которые зафиксированы в памяти человека и их можно измерить инструментально путем проведения повторного нивелирования. Скорость современных колебательных движений в среднем не превышает 1-2 см/год, а в горных районах она может достигать и 20 см/год.

Неотектонические движения – это движения за неоген-четвертичное время (25 млн. лет). Принципиально они ничем не отличаются от современных. Неотектонические движения зафиксированы в современном рельефе и главный метод их изучения – геоморфологический. Скорость их движения на порядок меньше, в горных районах – 1 см/год; на равнинах – 1 мм/год.

Древние медленные вертикальные движения зафиксированы в разрезах осадочных пород. Скорость древних колебательных движений по оценке ученых меньше 0.001 мм/год.

Орогенические движения происходят в двух направлениях – горизонтальном и вертикальном. Первое приводит к смятию пород и образованию складок и надвигов, т.е. к сокращению земной поверхности. Вертикальные движения приводят к поднятию области проявления складкобразования и возникновению нередко горных сооружений. Орогенические движения протекают значительно быстрее, чем колебательные.

Они сопровождаются активными эффузивным и интрузивным магматизмом, а также метаморфизмом. В последние десятилетия эти движения объясняют столкновением крупных литосферных плит, которые перемещаются в горизонтальном направлении по астеносферному слою верхней мантии.

ТИПЫ ТЕКТОНИЧЕСКИХ НАРУШЕНИЙ

Виды тектонических нарушений:

а – складчатые (пликатпвные) формы;

В большинстве случаев образование их связано с уплотнением или сжатием вещества Земли. Складчатые нарушения морфологически подразделяются на два основных типа: выпуклые и вогнутые. В случае горизонтального среза в ядре выпуклой складки располагаются более древние по возрасту пласты, а на крыльях – более молодые. Вогнутые изгибы, наоборот, имеют в ядре более молодые отложения. В складках выпуклые крылья обычно наклонены в стороны от осевой поверхности.

б – разрывные (дизъюнктивные) формы

Разрывными тектоническими нарушениями называют такие изменения, при которых нарушается сплошность (целостность) горных пород.

Разрывные нарушения разделяются на две группы: разрывы без смещения разделенных ими пород относительно друг друга и разрывы со смещением. Первые называются тектоническими трещинами, или диаклазами, вторые – параклазами

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). – М., – 1993.

Вернадский В.И. Избранные труды по истории науки. – М.: Наука, – 1981.

Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. – Киев: Наукова Думка, – 1985.

Современные идеи теоретической геологии. – Л.: Недра, – 1984.

Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века). – М.: Научный мир, 2003..

Хаин В.Е., Рябухин А.Г. История и методология геологических наук. – М.: МГУ, – 1996.

Хэллем А. Великие геологические споры. М.: Мир,1985.

Экзогенными (от греч. éxo - вне, снаружи) называют геологические процессы, которые обусловлены внешними по отношению к Земле источниками энергии: солнечной радиацией и гравитационным полем. Они протекают на поверхности земного шара или в приповерхностной зоне литосферы. К ним относятся гипергенез (выветривание), эрозия, абразия, седиментогенез и др.

Противоположные экзогенным процессам эндогенные (от греч. éndon - внутри) геологические процессы связаны с энергией, возникающей в недрах твердой части земного шара. Главными источниками эндогенных процессов считаются тепло и гравитационная дифференциация вещества по плотности с погружением более тяжелых составляющих элементов. К эндогенным процессам относятся вулканизм, сейсмичность, метаморфизм и др.

Использование представлений об экзогенных и эндогенных процессах, красочно иллюстрирующих динамику процессов в каменной оболочке в борьбе противоположностей, подтверждает справедливость высказывания Ж. Бодрийяра, что «Всякая унитарная система, если она хочет выжить, должна обрести бинарную регуляцию». Если имеется оппозиция, то существование симулякра, т. е. представления, скрывающего, что его нет, возможно.

В модели реального мира природы, очертывающейся законами естествознания, которые не имеют исключений, бинарность объяснений недопустима. Например, два человека держат в руке по камню. Один из них заявляет, что когда опустит камень, тот полетит к Луне. Это его мнение. Другой говорит, что камень упадет вниз. Спорить им, кто из них прав, не нужно. Есть закон всемирного тяготения, по которому в 100% случаев камень упадет вниз.

Согласно второму началу термодинамики нагретое тело на контакте с холодным в 100 % случаев остынет, нагревая холодное.

Если реально наблюдаемое строение литосферы из аморфного базальта, ниже глины, потом сцементированной глины - аргиллита, мелкокристаллического сланца, среднекристаллического гнейса и крупнокристаллического граница, то перекристаллизация вещества с глубиной с увеличением размера кристаллов однозначно свидетельствует о не поступлении из-под гранита тепловой энергии. В противном случае на глубине были бы аморфные горные породы, сменяющиеся к поверхности все более крупнокристаллическими образованиями.

Отсюда, глубинной тепловой энергии нет, а, стало быть, и эндогенных геологических процессов. Если нет эндогенных процессов, то теряет смысл выделение и противоположных им экзогенных геологических процессов.

А что же есть? В каменной оболочке земного шара, как и в атмосфере, гидросфере и биосфере, взаимосвязанных между собой, составляющих единую систему планеты Земля, происходит круговорот энергии и вещества, вызванный поступлением солнечной радиации и наличием энергии гравитационного поля. Этот круговорот энергии и вещества в литосфере и составляет систему геологических процессов.

Круговорот энергии состоит из трех звеньев. 1. Начальное звено - накопление веществом энергии. 2. Промежуточное звено - освобождение накопленной энергии. 3. Заключительное звено - удаление освобожденной тепловой энергии.

Круговорот вещества также состоит из трех звеньев. 1. Начальное звено - перемешивание разных веществ с усреднением химического состава. 2. Промежуточное звено - разделение усредненного вещества на две части разного химического состава. 3. Заключительное звено - удаление одной части, которая поглотила выделившееся тепло и стала разуплотненной, легкой.

Суть начального звена круговорота энергии вещества в литосфере в поглощении горными породами на поверхности суши поступающей солнечной радиации, что приводит к разрушению их до глины и обломков (процесс гипергенеза). Продукты разрушения накапливают громадное количество солнечной радиации в виде потенциальной свободной поверхностной, внутренней, геохимической энергии. Под действием силы тяжести продукты гипергенеза сносятся в пониженные участки, перемешиваясь, усредняя свой химический состав. В конечном счете, глина и пески сносятся на дно морей, где накапливаются слоями (процесс седиментогенеза). Формируется слоистая оболочка литосферы, около 80% которой приходится на глину. Химический состав глины = (гранит + базальт)/2.

На промежуточном звене круговорота слои глины погружаются в недра, перекрываясь новыми слоями. Возрастающее литостатическое давление (массы вышележащих слоев) приводит к отжатию из глины воды с растворенными солями и газами, сдавливанию глинистых минералов, уменьшению расстояний между их атомами. Это вызывает перекристаллизацию глинистой массы до кристаллических сланцев, гнейсов и гранитов. При перекристаллизации потенциальная энергия (аккумулированная солнечная) переходит в кинетическую тепловую, которая выделяется из кристаллического гранита и поглощается водно-силикатным раствором базальтового состава, находящимся в порах между кристаллами гранита.

На заключительное звено круговорота приходится удаление нагретого базальтового раствора на поверхность литосферы, где люди называют его лавой. Вулканизм - заключительное звено круговорота энергии и вещества в литосфере, суть которого в удалении нагретого базальтового раствора, образовавшегося при перекристаллизации глины в гранит.

Образующаяся при перекристаллизации глины тепловая энергия, поднимаясь на поверхность литосферы, создает для человека иллюзию поступления глубинной (эндогенной) энергии. На самом деле, это освобожденная солнечная энергия, преобразованная в тепловую. Как только тепловая энергия возникает при перекристаллизации, она сразу же удаляет вверх, поэтому на глубине нет эндогенной энергии (эндогенных процессов).

Таким образом, представление об экзогенных и эндогенных процессах представляет собой симулякр.

Ноотик - круговорот энергии и вещества в литосфере, вызванный поступлением солнечной энергии и наличием гравитационного поля.

Представление об экзогенных и эндогенных процессах в геологии является результатом восприятия мира каменной оболочки земного шара таким, каким его видит (хочет видеть) человек. Это и определило дедуктивный и фрагментарный способ мышления геологов.

Но, мир природы не создан человеком, и какой он, неизвестно. Для познания его необходимо применять индуктивный и системный способ мышления, что и реализовано в модели круговорота энергии и вещества в литосфере, как системе геологических процессов.

На протяжении всего существования Земли ее поверхность непрерывно менялась. Продолжается этот процесс и сегодня. Он протекает крайне медленно и незаметно для человека и даже множества поколений. Однако именно эти преобразования в конечном итоге коренным образом меняют внешний облик Земли. Подобные процессы делятся на экзогенные (внешние) и эндогенные (внутренние).

Классификация

Экзогенные процессы - результат взаимодействия оболочки планеты с гидросферой, атмосферой и биосферой. Их изучают для того, чтобы в точности определить динамику геологической эволюции Земли. Без экзогенных процессов не сложилось бы закономерностей развития планеты. Они исследуются наукой динамической геологией (или геоморфологией).

Специалистами принята всеобщая классификация экзогенных процессов, делящихся на три группы. Первая - это выветривание, которое представляет собой изменение свойств под воздействием не только ветра, но и углекислого газа, кислорода, жизнедеятельности организмов и воды. Следующий тип экзогенных процессов - денудация. Это разрушение пород (а не изменение свойств как в случае выветривания), их раздробление текучими водами и ветрами. Последний тип - аккумуляция. Это образование новых за счет осадков, накопившихся в понижениях земного рельефа в результате выветривания и денудации. На примере аккумуляции можно отметить наглядную взаимосвязь всех экзогенных процессов.

Механическое выветривание

Физическое выветривание называют еще и механическим. В результате таких экзогенных процессов породы превращаются в глыбы, песок и дресву, а также распадаются на обломки. Важнейший фактор физического выветривания - инсоляция. Вследствие нагрева солнечными лучами и последующего остывания происходит периодическое изменение объема породы. Оно вызывает растрескивание и нарушение связи между минералами. Результаты экзогенных процессов очевидны - порода раскалывается на куски. Чем больше температурная амплитуда, тем быстрее это происходит.

Скорость образования трещин зависит от свойств ее сланцеватости, слоистости, спайности минералов. Механическое разрушение может иметь несколько форм. От материала с массивной структурой откалываются куски, внешне напоминающие чешую, из-за чего этот процесс также называют чешуением. А гранит распадается на глыбы с формой параллелепипеда.

Химическое разрушение

Помимо всего прочего, растворению горных пород способствует химическое воздействие воды и воздуха. Кислород и углекислый газ являются наиболее активными агентами, опасными для целостности поверхностей. Вода несет в себе растворы солей, и поэтому ее роль в процессе химического выветривания особенно велика. Подобное разрушение может выражаться в самых разных формах: карбонатизации, окислении и растворении. Помимо этого, химическое выветривание приводит к образованию новых минералов.

Водные массы на протяжении тысячелетий каждый день стекают по поверхностям и просачиваются через поры, образующиеся в распадающихся горных породах. Жидкость выносит большое количество элементов, тем самым приводя к разложению минералов. Поэтому можно сказать, что в природе нет абсолютно нерастворимых веществ. Весь вопрос только в том, насколько долго они сохраняют свою структуру вопреки экзогенным процессам.


Окисление

Окисление затрагивает в основном минералы, в состав которых входит сера, железо, марганец, кобальт, никель и некоторые другие элементы. Этот химический процесс особенно активно протекает в среде, насыщенной воздухом, кислородом и водой. Например, соприкасаясь с влагой, входящие в состав горных пород закиси металлов становятся окисями, сульфиды - сульфатами и т. п. Все эти процессы непосредственным образом влияют на рельеф Земли.

В результате окисления в нижних слоях почвы накапливаются осадки бурного железняка (ортзанды). Есть и другие примеры его влияния на рельеф. Так, выветриваемые горные породы, содержащие железо, покрываются бурыми корками лимонита.


Органическое выветривание

Организмы также участвуют в разрушении горных пород. К примеру, лишайники (простейшие растения) могут селиться практически на любой поверхности. Они поддерживают жизнь, извлекая с помощью выделяемых органических кислот питательные вещества. После простейших растений на горных породах селится древесная растительность. В таком случае трещины становятся домом для корней.

Характеристика экзогенных процессов не может обойтись без упоминания червей, муравьев и термитов. Они проделывают длинные и многочисленные подземные ходы и тем самым способствуют попаданию под почву атмосферного воздуха, в составе которого есть разрушительный углекислый газ и влага.


Влияние льда

Лед - важный геологический фактор. Он играет весомую роль в формировании земного рельефа. В горных областях льды, двигаясь по речным долинам, изменяют форму стоков и сглаживают поверхности. Такое разрушение геологи назвали экзарацией (выпахиванием). Движущийся лед выполняет еще одну функцию. Он переносит обломочный материал, отколовшийся от горных пород. Продукты выветривания осыпаются со склонов долин и оседают на поверхности льда. Подобный разрушенный геологический материал называется мореной.

Не менее важен грунтовый лед, который образуется в почве и заполняет грунтовые поры на территориях многолетней и вечной мерзлоты. В качестве способствующего фактора здесь выступает еще и климат. Чем ниже средняя температура, тем больше глубина промерзания. Там, где летом тает наледь, на поверхность земли вырываются напорные воды. Они разрушают рельеф и меняют его форму. Подобные процессы из года в год циклично повторяются, к примеру, на севере России.


Фактор моря

Море занимает около 70% поверхности нашей планеты и, без сомнения, всегда было важным геологическим Океанская вода движется под воздействием ветра, приливных и отливных течений. С этим процессом связано значительное разрушение земной коры. Волны, которые плещутся даже при самом слабом волнении моря у берегов, без остановки подтачивают окрестные скалы. Во время шторма сила прибоя может составлять несколько тонн на один квадратный метр.

Процесс сноса и физического разрушения береговых горных пород морской водой называется абразией. Он протекает неравномерно. На берегу может появиться размытая бухта, мыс или отдельные скалы. Кроме того, прибой волн образует обрывы и уступы. Характер разрушений зависит от структуры и состава береговых пород.

На дне океанов и морей протекают беспрерывные процессы денудации. Этому способствуют интенсивные течения. Во время шторма и других катаклизмов образуются мощные глубинные волны, которые на своем пути натыкаются на подводные склоны. При столкновении происходит разжижающий ил и разрушающий породу.


Работа ветра

Ветер как ничто больше меняет земную поверхность. Он разрушает горные породы, переносит обломочный материал маленького размера и отлагает его ровным слоем. При скорости в 3 метра в секунду ветер шевелит листья, в 10 метров - качает толстые ветви, поднимает пыль и песок, в 40 метров, вырывает деревья и сносит дома. Особенно разрушительную работу проделывают пылевые вихри и смерчи.

Процесс выдувания ветром частиц горных пород называется дефляцией. В полупустынях и пустынях она образует значительные понижения на поверхности, сложенной из солончаков. Ветер действует интенсивнее, если земля не защищена растительностью. Поэтому особенно сильно он деформирует горные котловины.


Взаимодействие

В формировании огромную роль играет взаимосвязь экзогенных и эндогенных геологических процессов. Природа устроена так, что одни порождают другие. К примеру, внешние экзогенные процессы со временем приводят к появлению трещин в земной коре. Через эти отверстия из недр планеты поступает магма. Она растекается в форме покровов и формирует новые породы.

Магматизм это не единственный пример того, как устроено взаимодействие экзогенных и эндогенных процессов. Ледники способствуют выравниванию рельефа. Это внешний экзогенный процесс. В результате него образуется пенеплен (равнина с небольшими холмами). Затем в результате эндогенных процессов (тектонического движения плит) эта поверхность поднимается. Таким образом, внутренние и внешние факторы могут противоречить друг другу. Взаимосвязь эндогенных и экзогенных процессов сложна и многогранна. Сегодня она подробно изучается в рамках геоморфологии.


Сущность эндогенных процессов Земли

Эндогенные процессы (греч.Endon - внутри + Genes - рождающий, рожденный) - рельефообразующие геологические процессы, связанные с энергией, возникающей в недрах твёрдой земли и обусловленные ее внутренней энергией, силой тяжести и силами, возникающими при вращении Земли. Эндогенные процессы проявляются в виде тектонических движений земной коры, магматизма, метаморфизма горных пород, сейсмической активности. Главными источниками энергии эндогенных процессов являются тепло и перераспределение материала в недрах Земли по плотности (гравитационная дифференциация). Эндогенные процессы играют главную роль при образовании крупных форм рельефа.

Гравитационная дифференциация вела к расслоению Земли на геосферы разной плотности. На поверхности Земли она проявляется также в форме тектонических движений, которые, в свою очередь, ведут к тектоническим деформациям пород земной коры и верхней мантии; накопление и последующая разрядка тектонических напряжений вдоль активных разломов приводят к землетрясениям.


Рис.1. Грабен

Грабен - (нем. Graben, буквально - ров) участок земной коры, опущенный по крутым, нередко вертикальным разрывам, обычно сбросам, относительно окружающих участков. Размеры грабенов достигают десятков километров в поперечнике и сотен километров в длину. Система величайших в мире грабен проходит на востоке Африки. В Западной Европе крупнейшим грабеном является долина р. Рейн. Подобные грабены планетарного масштаба названы рифтами; Грабены осложнённые по краям дополнительными разрывами, создающими ступени, называются сложными.


Рис.2. Горст

Горст - (нем.Horst - гнездо), приподнятый над смежными участками, обычно вытянутый, участок земной коры, ограниченный круто наклоненными разрывами сбросами или взбросами. Размеры Г. различны - до многих десятков км в поперечнике и сотен км в длину.

Сущность экзогенных процессов Земли

Экзогенные процессы - геологические процессы, обусловленные внешними по отношению к Земле источниками энергии (преимущественно солнечное излучение) в сочетании с силой тяжести. Экзогенные процессы протекают на поверхности и в приповерхностной зоне земной коры в форме механического и физико-химического её взаимодействия с гидросферой и атмосферой. К ним относятся: выветривание, геологическая деятельность ветра (эоловые процессы, дефляция), проточных поверхностных и подземных вод (эрозия, денудация), озёр и болот, вод морей и океанов (абразия), ледников (экзарация). Главные формы проявления Э. п. на поверхности Земли: разрушение горных пород и химическое преобразование слагающих их минералов (физическое, химическое, органическое выветривание); удаление и перенос разрыхлённых и растворимых продуктов разрушения горных пород водой, ветром и ледниками; отложение (аккумуляция) этих продуктов в виде осадков на суше или на дне водных бассейнов и постепенное их преобразование в осадочные горные породы (седиментогенез, диагенез, катагенез). Э. п. в сочетании с эндогенными процессами участвуют в формировании рельефа Земли, в образовании толщ осадочных горных пород и связанных с ними месторождений полезных ископаемых. Так, например, в условиях проявления специфических процессов выветривания и осадконакопления образуются руды алюминия (бокситы), железа, никеля и др.; в результате селективного отложения минералов водными потоками формируются россыпи золота и алмазов; в условиях, благоприятствующих накоплению органические вещества и обогащенных им толщ осадочных горных пород, возникают горючие полезные ископаемые.

Карст (от нем. Karst, по названию известнякового альпийского плато Крас в Словении), - совокупность процессов и явлений, связанных с деятельностью воды и выражающихся в растворении горных пород и образовании в них пустот, а также своеобразных форм рельефа, возникающих на местностях, сложенных сравнительно легко растворимыми в воде горными породами (гипсами, известняками, мраморами, доломитами и каменной солью).



Рис.3. Карстовая поверхность (Чатырдаг, Крым, Украина)

На своём подземном пути вода встречает растворимые породы, к которым относятся галогены (каменная соль), карбонатные породы (известняк, доломит, мрамор), а также сульфаты (гипс, ангидрит). Протекая по трещинкам, вода растворяет породы, отчасти механически размывает их, расширяя путь, часто образуя большие подземные полости и пещеры. Подобную работу производят и атмосферные воды, стекающие по поверхности выходов растворимых прод и просачиваясь в их трещины. Вся совокупность этих процессов носит название карста или карстообразования. Термин происходит от названия известнякового плато Карст к северу от Триеста, в Словении, на северном побережье Адриатического моря. Развитие карста может происходить лишь у поверхности или на сравнительно небольшой глубине от неё, там, где циркуляция подземных вод интенсивна. Более всего распространён карст в карбонатных породах, тогда как соляной и гипсовый карст - явление сравнительно редкое. Это объясняется тем, что соли и гипс обычно залегают среди водоупорных глинистых пород, не пропускающих к ним воду. Кроме того, эти породы обычно массивны, не трещиноваты. В дальнейшем речь пойдёт о карбонатном карсте.

Подземные карстовые ходы начинаются обычно с поверхности Земли, поскольку их появление связано с проникновением под землю атмосферных вод. Поверхностной формой проявления карста являются неглубокие рытвины или борозды, вскрытые на поверхности выхода породы дождевыми водами и называемые каррами. Карры иногда покрывают обширные площади, превращая их в неудобную для обработки и даже труднопроходимую местность - карровые поля. Иногда вода стекает со всех сторон к какому-либо ходу, образуя вокруг него воронкообразное понижение, называемое карстовой воронкой. На дне воронки располагается водопоглощающее отверстие в виде вертикального или наклонного хода, проделанного водой - понор.

В тех областях, где карст очень древний, на дне воронок накапливается много смытых остаточных глинистых продуктов растворения известняков. Они часто бывают богаты окислами железа и окрашены в красный цвет, почему получили название "terra rossa". Они очень плодородны, покрыты пышной растительностью и являются настоящими оазисами среди голых известковых скал. Ещё более крупные и глубокие карстовые котловины, достигающие глубины многих десятков и сотен метров и занимающие иногда площади в десятки км 2 , называются полья.

Растворяющая работа воды создаёт целую систему подземных карстовых форм в виде различных полостей. Среди последних можно выделить прежде всего группу вертикальных и наклонных карстовых ходов, являющихся путями движения воды. К ним относятся карстовые колодцы, достигающие иногда 10-20 м в поперечнике и 200-300 м глубины. Эти ходы ведут в сплошную систему связанных между собой горизонтальных и наклонных туннелей и галерей, нередко расположенных в несколько ярусов и получивших название карстовых пещер. Они бывают весьма велики. Так, суммарная длина всех ходов величайшей в мире Мамонтовой пещеры в США превышает 300 км. По таким пещерам протекают целые подземные реки и ручьи, в их залах умещаются подземные озёра. Вода, проникающая сюда за счёт просачивания атмосферных осадков, содержит много растворённого СО 2 . Она поэтому легко растворяет известняк, насыщаясь углекислым Са в виде бикарбоната. Попадая на стену или потолок пещеры, вода выделяет часть растворённого СО 2 и бикарбонат вновь переходит в среднюю соль. Она трудно растворима и частично выпадает в осадок в виде кальцита: Са(НСО 3) 2 СаСО 3 + Н 2 О + СО 2

Морозное пучение - увеличение объёма промерзающих влажных почв и рыхлых горных пород вследствие кристаллизации в них воды (образующей ледяные прослойки, линзы и т. д.) и разуплотнения минеральных частиц. Наблюдается в областях распространения сезонно- и многолетнемёрзлых пород. М. п. вызывает неравномерное поднятие промерзающих толщ; неодинаковая величина поднятия объясняется различиями в условиях промерзания, составе пород, их влажности, плотности и т. д. Наиболее подвержены М. п. глинистые породы, поскольку их М. п. зависит не только от собственной влажности, но и от миграционной влаги, поступающей в промерзающий грунт из смежных немёрзлых зон. Напряжения, возникающие в грунтах при М. п., способны вызвать разрыв корневой системы растений, деформации и смещения сооружений и т. п. Для предупреждения неблагоприятных последствий М. п. проводят мелиоративные работы, обрабатывают грунт веществами, изменяющими его физико-химические свойства; применяют специальные строительные конструкции.



Рис.4. Гидролакколиты возле Туктуяктука (Канада)

Гидролакколиты - масса подпочвенного льда, по форме сходные с лакколитами. Они образуются в криолитозоне, причём на территориях, где верхняя граница многолетней мерзлоты залегает близко к дневной поверхности. Гидролакколиты могут образовываться также и при промерзании закрытых систем несквозных таликов под осушающимися обычно термокарстовыми озёрами, большая часть из которых в конечном итоге может представлять собой аласы.

Гидролакколиты - это по-существу инъекционные бугры пучения. Они образуются в местах разгрузки напорных межмерзлотных вод и в обрамлении наледей, каковыми, выходя на поверхность под напором и быстро замерзая, они и являются (наледные бугры.) Напорные воды выходят на поверхность на участках разрывов растяжения, обычно - по ослабленных границам трещинных полигонов. Наледные бугры (гидролакколиты) также представляют собой выпуклые части наледных массивов, образовавшихся, в частности, в результате пучения льда или замерзания излившихся на поверхность грунтовых вод через ослабленные участки деятельного слоя. Такие гидролакколиты и бугры имеют часто сезонный характер (Юго-Восточный Алтай), в субполярных и полярных условиях они способны существовать много лет.

Целесообразно подчеркнуть ещё раз и главное различие гидролакколитов и бугров пучения. Первые - это залежи льда терминологически предельно точно определённой формы залегания - лакколитов. Вторые совсем не обязательно имеют в основании льды и льдистые породы. Первые могут считаться иногда буграми пучения в широком понимании, вторые очень часто могут не иметь к гидролакколитам никакого отношения. Более того, иногда напорные межмерзлотные воды, которые не успевают, или не обладают достаточной энергией для достижения дневной поверхности, замерзают на глубине, представляя собой аналог межпластовой интрузии, в аспекте настоящей статьи - подземный гидролакколит. Распространения гидролакколитов контиролируется южной границей криолитозоны на равнинах и низкогорьях Арктики и Субарктики, а также, в высоких горах, нижней границей перигляциального пояса.