Кинетическая и потенциальная энергия. Чем отличается кинетическая энергия от потенциальной

Рассматриваемые вопросы:

Общие теоремы динамики механической системы. Кинетическая энергия: материальной точки, системы материальных точек, абсолютно твердого тела (при поступательном, вращательном и плоском движении). Теорема Кенига. Работа силы: элементарная работа сил, приложенных к твердому телу; на конечном перемещении, силы тяжести, силы трения скольжения, силы упругости. Элементарная работа момента силы. Мощность силы и пары сил. Теорема об изменении кинетической энергии материальной точки. Теорема об изменении кинетической энергии изменяемых и неизменяемых механических систем (дифференциальный и интегральный вид). Потенциальное силовое поле и его свойства. Эквипотенциальные поверхности. Потенциальная функция. Потенциальная энергия. Закон сохранения полной механической энергии.

5.1 Кинетическая энергия

а) материальной точки:

Определение: кинетической энергией материальной точки называется половина произведения массы этой точки на квадрат её скорости:

Кинетическая энергия является скалярной положительной величиной.

В системе СИ, единицей измерения энергии является джоуль:

1 дж = 1 Н?м.

б) системы материальных точек:

Кинетическая энергия системы материальных точек это сумма кинетических энергий всех точек системы:

(127)

в) абсолютно твердого тела:

1) при поступательном движении.

Скорости всех точек одинаковы и равны скорости центра масс, т.е. , тогда:

где М - масса тела.

Кинетическая энергия твердого тела, движущегося поступательно, равна половине произведения массы тела М на квадрат его скорости.

2) при вращательном движении.

Скорости точек определяются по формуле Эйлера:

(130)

Модуль скорости:

(131)

Кинетическая энергия тела при вращательном движении:

(133)

где: z - ось вращения.

Кинетическая энергия твердого тела, вращающегося вокруг неподвижной оси, равна половине произведения момента инерции этого тела относительно оси вращения на квадрат угловой скорости тела.

3) при плоском движении.

Скорость любой точки определяются через полюс:

(134)

Плоское движение состоит из поступательного движения со скоростью полюса и вращательного движения вокруг этого полюса, тогда кинетическая энергия складывается из энергии поступательного движения и энергии вращательного движения.

Кинетическая энергия через полюс «А» при плоском движении:

(135)

Лучше всего за полюс брать центр масс, тогда:

(136)

Это удобно потому, что моменты инерции относительно центра масс всегда известны.

Кинетическая энергия твердого тела при плоско-параллельном движении складывается из кинетической энергии поступательного движения вместе с центром масс и кинетической энергии от вращения вокруг неподвижной оси, проходящей через центр масс и перпендикулярной плоскости движения.


Часто бывает удобным брать за полюс мгновенный центр скоростей. Тогда:

(137)

Учитывая, что по определению мгновенного центра скоростей его скорость равна нулю, то .

Кинетическая энергия относительно мгновенного центра скоростей:

(138)

Необходимо помнить, что для определения момента инерции относительно мгновенного центра скоростей необходимо применять формулу Гюйгенса - Штейнера:

(139)

Эта формула бывает предпочтительнее в тех случаях, когда мгновенный центр скоростей находится на конце стержня.

4) Теорема Кенига.

Предположим, что механическая система вместе с системой координат, проходящей через центр масс системы, движется поступательно относительно неподвижной системы координат. Тогда, на основании теоремы о сложении скоростей при сложном движении точки, абсолютная скорость произвольной точки системы запишется как векторная сумма переносной и относительной скоростей:

(140)

где: - скорость начала подвижной системы координат (переносная скорость, т.е. скорость центра масс системы);

Скорость точки относительно подвижной системы координат (относительная скорость). Опуская промежуточные выкладки, получим:

(141)

Это равенство определяет теорему Кенига.

Формулировка: Кинетическая энергия системы равна сумме кинетической энергии, которую имела бы материальная точка, расположенная в центре масс системы и имеющая массу, равную массе системы, и кинетической энергии движения системы относительно центра масс.

5.2Работа силы.

Обозначающего «действие». Можно назвать энергичным человека, который двигается, создает определенную работу, может творить, действовать. Также энергией обладают машины, созданные людьми, живая и природа. Но это в обычной жизни. Помимо этого, есть строгая , определившая и обозначившая многие виды энергии – электрическую, магнитную, атомную и пр. Однако сейчас речь пойдет о потенциальной энергии, которую нельзя рассматривать в отрыве от кинетической.

Кинетическая энергия

Этой энергией, согласно представлениям механики обладают все тела, которые взаимодействуют друг с другом. И в данном случае речь идет о движении тел.

Потенциальная энергия

A=Fs=Fт*h=mgh, или Eп=mgh, где:
Eп - потенциальная энергия тела,
m - масса тела,
h - высота тела над поверхностью земли,
g - ускорение свободного падения.

Два вида потенциальной энергии

У потенциальной энергии различается два вида:

1. Энергия при взаимном расположении тел. Такой энергией обладает подвешенный камень. Интересно, но потенциальной энергией обладают и обычные дрова или уголь. В них содержится не окисленный углерод, который может окислиться. Если сказать проще, сгоревшие дрова потенциально могут нагреть воду.

2. Энергия упругой деформации. Для примера здесь можно привести эластичный жгут, сжатую пружину или система «кости-мышцы-связки».

Потенциальная и кинетическая энергия взаимосвязаны. Они могут переходит друг в друга. К примеру, если камень вверх, при движении сначала он обладает кинетической энергией. Когда он достигнет определенной точки, то на мгновение замрет и получит потенциальную энергию, а затем гравитация потянет его вниз и снова возникнет кинетическая энергия.

Найдем, как энергия тел зависит от их скорости.

Пусть на тело массой m действует сила \(~\vec F\) (это может быть одна сила или равнодействующая нескольких сил), направленная вдоль перемещения, и скорость тела изменяется от υ 1 до υ 2 (рис. 1). Работа этой силы A = F Δr .

По второму закону Ньютона F = ma .

При равноускоренном движении \(~a = \frac{\upsilon^2_2 - \upsilon^2_1}{2 \Delta r}\). Следовательно,

\(~A = \frac{m \upsilon^2_2}{2} - \frac{m \upsilon^2_1}{2}.\)

Физическая величина \(~W_k = \frac{m \upsilon^2}{2}\) называется кинетической энергией.

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией .

Тогда А = W k2 - W k1 , т.е.

\(~\Delta W_k = A\) -

теорема о кинетической энергии : изменение кинетической энергии тела равно работе равнодействующей всех сил, действующих на тело .

Эта теорема справедлива независимо от того, какие силы действуют на тело: сила упругости, сила трения или сила тяжести.

Если υ 1 = 0 и υ 2 = υ , то \(~\frac{m \upsilon^2}{2} = A\).

Таким образом, кинетическая энергия тела равна работе, которую не обходимо совершить, чтобы покоящемуся телу сообщить скорость υ .

Кинетическая энергия зависит от выбора системы отсчета.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 69-70.

С понятием работы тесно связано другое фундаментальное физическое понятие – понятие энергии. Поскольку в механике изучается, во-первых, движение тел, а во-вторых, взаимодействие тел между собой, то принято различать два вида механической энергии: кинетическую энергию , обусловленную движением тела, и потенциальную энергию , обусловленную взаимодействием тела с другими телами.

Кинетической энергией механической системы называют энергию, з ависящую от скоростей движения точек этой системы.

Выражение для кинетической энергии можно найти, определив работу равнодействующей силы, приложенной к материальной точке. На основании (2.24) запишем формулу для элементарной работы равнодействующей силы:

Так как
, то dА = mυdυ. (2.25)

Чтобы найти работу равнодействующей силы при изменении скорости тела от υ 1 до υ 2 проинтегрируем выражение (2.29):

(2.26)

Так как работа - мера передачи энергии от одного тела другому, то на

основании (2.30) запишем, что величина есть кинетическая энергия

тела:
откуда вместо (1.44) получаем

(2.27)

Теорему, выраженную формулой (2.30) принято называть теоремой о кинетической энергии . В соответствии с ней работа сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).

Из теоремы о кинетической энергии следует физический смысл кинетической энергии : кинетическая энергия тела равна работе, которую оно способно совершать в процессе уменьшения своей скорости до нуля. Чем больше «запас» кинетической энергии у тела, тем большую работу оно способно совершить.

Кинетическая энергия системы равна сумме кинетических энергий материальных точек, из которых эта система состоит:

(2.28)

Если работа всех сил, действующих на тело, положительна, то кинетическая энергия тела возрастает, если работа отрицательна, то кинетическая энергия убывает.

Очевидно, что элементарная работа равнодействующей всех приложенных к телу сил будет равна элементарному изменению кинетической энергии тела:

dА = dЕ к. (2.29)

В заключение заметим, что кинетическая энергия, как и скорость движения, имеет относительный характер. Например, кинетическая энергия пассажира, сидящего в поезде, будет разной, если рассматривать движение относительно полотна дороги или относительно вагона.

§2.7 Потенциальная энергия

Вторым видом механической энергии является потенциальная энергия – энергия, обусловленная взаимодействием тел.

Потенциальная энергия характеризует не любое взаимодействие тел, а лишь такое, которое описывается силами, не зависящими от скорости. Большинство сил (сила тяжести, сила упругости, гравитационные силы и т.д.) именно таковы; исключением являются лишь силы трения. Работа рассматриваемых сил не зависит от формы траектории, а определяется лишь её начальным и конечным положением. Работа таких сил на замкнутой траектории равна нулю.

Силы, работа которых не зависит от формы траектории, а зависит лишь от начального и конечного положения материальной точки (тела) называют потенциальными или консервативными силами .

Если тело взаимодействует со своим окружением посредством потенциальных сил, то для характеристики этого взаимодействия можно ввести понятие потенциальной энергии.

Потенциальной называют энергию, обусловленную взаимодействием тел и зави­сящую от их взаимного расположения.

Найдем потенциальную энергию тела, поднятого над землей. Пусть тело массой m равномерно перемещается в гравитационном поле из положения 1 в положение 2 по поверхности, сечение которой плоскостью чертежа показано на рис. 2.8. Это сечение является траекторией материальной точки (тела). Если трение отсутствует, то на точку дейст­вуют три силы:

1) сила N со стороны поверхности нормально поверхности, работа этой силы равна нулю;

2) сила тяжести mg, работа этой силы А 12 ;

3) сила тяги F со стороны некоторого движущего тела (двигатель внутреннего сгорания, электродвигатель, человек и т. п.); работу этой силы обозначим А T .

Рассмотрим работу силы тяжести при перемещении тела вдоль наклонной плоскости длиной ℓ (рис. 2.9). Как видно из этого рисунка, работа равна

А" = mgℓ соsα = mgℓ соs(90° + α) = - mgℓ sinα

Из треугольника ВСD имеем ℓ sinα = h, по­этому из последней формулы следует:

Траекторию движения тела (см. рис. 2.8) можно схематично представить небольшими участками наклонной плоскости, поэтому для, работы силы тяжести на всей траектории 1 -2 справедливо выражение

A 12 =mg (h 1 -h 2) =-(mg h 2 - mg h 1) (2.30)

Итак, работа силы тяжести не зависит от траектории тела, а зависит от различия в высотах расположения начальной и конечной точек траектории.

Величину

е п = mg h (2.31)

называют потенциальной энергией материальной точки (тела) массой m поднятой над землей на высоту h. Следовательно, формулу (2.30) можно переписать так:

A 12 = =-(En 2 - En 1) или A 12 = =-ΔEn (2.32)

Работа силы тяжести равна взятому с обратным знаком изменению потенциальной энергии тел, т. е. разности ее конечного и начального значений (теорема о потенциальной энергии ).

Подобные рассуждения можно привести и для упруго деформированного тела.

(2.33)

Отметим, что физический смысл имеет разность потенциальных энергий как величина, определяющая работу консервативных сил. В связи с этим безразлично, какому положению, конфигурации, следует приписать нулевую потенциальную энергию.

Из теоремы о потенциальной энергии можно получить одно очень важное следствие: консервативные силы всегда направлены в сторону уменьшения потенциальной энергии. Установленная закономерность проявляется в том, что любая система, предоставленная самой себе, всегда стремится перейти в такое состояние, в котором её потенциальная энергия имеет наименьшее значение. В этом заключается принцип минимума потенциальной энергии .

Если система в данном состоянии не обладает минимальной потенциальной энергией, то это состояние называют энергетически невыгодным .

Если шарик находится на дне вогнутой чаши (рис.2.10,а), где его потенциальная энергия минимальна (по сравнению с ее значениями в соседних положениях), то его состояние более выгодно. Равновесие шарика в этом случае является устойчивым : если сместить шарик в сторону и отпустить, то он снова возвратится в своё первоначальное положение.

Энергетически невыгодным, например, является положение шарика на вершине выпуклой поверхности (рис.2.10, б). Сумма сил, действующих при этом на шарик, равна нулю, и потому, этот шарик будет находится в равновесии. Однако равновесие это является неустойчивым : достаточно малейшего воздействия, чтобы он скатился вниз и тем самым перешёл в состояние энергетически более выгодное, т.е. обладающее меньшей

потенциальной энергией.

При безразличном равновесии (рис. 2.10, в) потенциальная энергия тела равна потенциальной энергии всех его возможных ближайших состояний.

На рисунке 2.11 можно указать некоторую ограниченную область пространства (например cd), в которой потенциальная энергия меньше, чем вне её. Эта область получила название потенциальной ямы .

Открытие закона сохранения импульса, который утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная, показало, что механическое движение тел имеет количественную меру, сохраняющуюся при любых взаимодействиях тел. Этой мерой является импульс. Однако только с помощью этого закона не получится дать полное объяснение всех закономерностей движения и взаимодействия тел.

Рассмотрим пример. Пуля массой 9 грамм, находящаяся в состоянии покоя, абсолютно безвредна. Но во время выстрела при соприкосновении с препятствием пуля деформирует его. Очевидно, что такой разрушительный эффект получается в результате того, что пуля обладает особой энергией.

Рассмотрим другой пример. Два одинаковых пластилиновых шара движутся навстречу друг другу с одинаковыми скоростями. При столкновении они останавливаются и соединяются в одно тело.

Сумма импульсов шаров до столкновения и после столкновения одинакова и равна нулю, закон сохранения импульсов выполняется. Что же происходит с пластилиновыми шарами при их столкновении, кроме изменения скорости движения? Шары деформируются и нагреваются.

Повышение температуры тел при столкновении можно наблюдать, например, при ударе молотка по свинцовому или медному стержню. Изменение температуры тела свидетельствует об изменениях скоростей хаотичного теплового движения атомов, из которого состоит тело. Следовательно, механическое движение не исчезло бесследно, оно превратилось в другую форму движения материи.

Вернёмся к вопросу, который мы ставили выше. Имеется ли в природе мера движения материи, сохраняющаяся при любых превращениях одной формы движения в другую? Опыты и наблюдения показали, что такая мера движения в природе существует. Её назвали энергией.

Энергией называется физическая величина, являющаяся количественной мерой различных форм движения материи.

Для точного определения энергии как физической величины необходимо найти её связь с другими величинами, выбрать единицу измерения и найти способы её измерения.

Механической энергией называется физическая величина, которая является количественной мерой механического движения.

В физике в качестве такой количественной меры поступательного механического движения при возникновении его из других форм движения или превращении в другие формы движения принята величина, равная половине произведения массы тела на квадрат скорости его движения. Эта физическая величина называется кинетической энергией тела и обозначается буквой Е с индексом к :

Е к = mv 2 / 2

Так как скорость является величиной, зависящей от выбора системы отсчёта, значение кинетической энергии тела зависит от выбора системы отсчёта.

Существуеттеорема о кинетической энергии. «Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии»:

А = Е к2 -Е к1

Данная теорема будет справедлива и когда тело движется под действием константной силы, и когда тело движется по действием изменяющейся силы, направление которой не совпадает с направлением перемещения. Кинетическая энергия – это энергия движения. Получается, кинетическая энергия тела массой m, движущегося со скоростью v равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

А = mv 2 / 2 = Е к

Если тело будет двигаться со скоростью v, то для его полной остановки необходимо совершить работу:

А = -mv 2 / 2 = -Е к

За единицу работы в международной системе принимается работа, совершаемая силой 1 Ньютон на пути 1 метр при движении по направлению вектора силы. Эта единица измерения работы называется Джоулем.

1 Дж = 1 кг · м 2 / c 2

Так как работа равна изменению энергии, для измерения энергии используется та же единица измерения, что и для измерения работы. Единица энергии в СИ – 1Дж.

Остались вопросы? Не знаете, что такое кинетическая энергия?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.