Как устроена энергетическая станция человека? Где же у человека батарейка? Аккумуляторы энергии в организме Универсальным аккумулятором энергии является

АТФ - универсальный накопитель биологической энергии. Ее роль для всего живого была сформулирована академиком АМН СССР В. А. Энгельгардтом в 1940 г. следующим образом: «Любой клеточный накопитель энергии образует АТФ, любой расход энергии в клетке оплачивается АТФ». Это правило справедливо и для мышечных клеток и клеток мозга, где энергия накапливается дополнительно.

В китайской традиции существует понятие четырех биграмм или четырех фундаментальных энергий : трансцендентная энергия , энергия начала, о ней никогда не говорится в книгах, поскольку, она вездесуща и без нее ничего бы не существовало; ...

Молекула АТФ содержит три остатка фосфорной кислоты. Связи между ними (в присутствии фермента АТФазы) легко разрываемы. При отщеплении от одной молекулы АТФ одной молекулы фосфорной кислоты выделяется 40 кДж энергии, поэтому связи называют макроэргическими (несущими большое количество энергии).

Преобразование химически связанной в АТФ энергии в механическую (необходимую для осуществления мышечного сокращения), электрическую, световую, звуковую энергию осмоса и другие ее виды, обеспечивающие синтез пластических веществ в клетке, рост , развитие , возможность передачи наследственных признаков, осуществляется в головке элементарных частиц дыхательных ансамблей благодаря присутствию в них, т. е. в тех же частицах, где происходит ее синтез. Выделяющаяся при распаде АТФ энергия непосредственно переходит в биологическую, необходимую для синтеза белков, нуклеотидов и других органических соединений, без которого рост и развитие организма невозможны. Запасы энергии в АТФ используются для осуществления движений, генерации электричества, света, для выполнения любой функции клетки и ее органелл.

Запасы АТФ в клетке ограничены. В мышечных волокнах они могут обеспечить энергией всего лишь 30-40 сокращений, а в клетках других тканей их еще меньше. Для пополнения запасов АТФ должен постоянно происходить ее синтез - из (АДФ) и неорганического фосфата, который осуществляется с участием фермента АТФсинтетазы. Поэтому большое значение для управления процессом синтеза АТФ имеет соотношение между концентрациями АТФ и АДФ (активностью АТФсинтетазы). При недостатке АДФ благодаря наличию АТФазы в активном центре будет ускоряться гидролиз АТФ, который, как отмечалось, связан с процессом окислительного, зависит от состояния переносчиков водорода и кислорода.

Чем больше НАД и меньше восстановленной его формы, чем больше окисленного цитохрома с и АДФ, тем скорость синтеза АТФ выше. Наряду с другими ферментами и коферментами в качестве основных регуляторов работы дыхательных ансамблей выступают на первом этапе переноса водорода от субстрата НАД - НАД на втором - переносчик электронов на кислород , цитохромы, и на заключительном этапе - соотношение между АТФ и АДФ.

Помогите пожалуйста режить 2 работы, очень срочно надо. Надеюсь на вашу помощь, так как в биологии я не очень сильна. А1. Клетки сходные по строению и

выполняемым функциям, образуют 1) Ткани; 2) органы; 3) системы органов; 4) единый организм. А2. В процессе фотосинтеза растения 1) Обеспечивают себя органическими веществами 2) окисляют сложные органические вещества до простых 3) Поглощают кислород и выделяют углекислый газ 4) Расходуют энергию органических веществ. А3. В клетке происходит синтез и расщепление органических веществ, поэтому её называют единицей 1) Строения 2) жизнедеятельности 3) роста 4) размножения. А4. Какие структуры клетки распределяются строго равномерно между дочерними клетками в процессе митоза? 1) Рибосомы; 2) митохондрии; 3) хлоропласты; 4) хромосомы. А5. Дезоксирибоза является составной частью 1) Аминокислот 2) белков 3) и РНК 4) ДНК. А6. Вирусы, проникая в клетку хозяина, 1) Питаются рибосомами; 2) поселяются в митохондриях; 3) Воспроизводят свой генетический материал; 4) Отравляют её вредными веществами, образующимися в ходе их обмена веществ. А7. Каково значение вегетативного размножения? 1) способствует быстрому увеличению численности особей вида; 2) ведет к появлению вегетативной изменчивости; 3) увеличивает численность особей с мутациями; 4) приводит к разнообразию особей в популяции. А8. Какие структуры клетки, запасающие питательные вещества, не относят к органоидам? 1) Вакуоли; 2) лейкопласты; 3) хромопласты; 4) включения. А9. Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка? 1) 300 2) 600 3) 900 4) 1500 А10. В состав вирусов, как и бактерий, входят 1) нуклеиновые кислоты и белки 2) глюкоза и жиры 3) крахмал и АТФ 4) вода и минеральные соли А11. В молекуле ДНК нуклеотиды с тимином составляют 10 % от общего числа нуклеотидов. Сколько нуклеотидов с цитозином в этой молекуле? 1) 10% 2) 40% 3)80% 4) 90% А12. Наибольшее количество энергииосвобождается при расщеплении одной связи в молекуле 1) Полисахарида 2) белка 3) глюкозы 4) АТФ 2 Вариант А1. Благодаря свойству молекул ДНК самоудваиваться 1) Происходят мутации 2) у особей возникают модификации 3) появляются новые комбинации генов 4) передаётся наследственная информация к дочерним клеткам. А2. Какое значение митохондрии в клетке 1) транспортируют и выводят конечные продукты биосинтеза 2) преобразуют энергию органических веществ в АТФ 3) осуществляют процесс фотосинтеза 4) синтезируют углеводы А3. Митоз в многоклеточном организме составляет основу 1) гаметогенеза 2) роста и развития 3) обмена веществ 4) процессов саморегуляции А4. Каковы цитологические основы полового размножения организма 1) способность ДНК к репликации 2) процесс формирования спор 3)накопление энергии молекулой АТФ 4) матричный синтез иРНК А5. При обратимой денатурации белка происходит 1) нарушение его первичной структуры 2) образование водородных связей 3) нарушение его третичной структуры 4) образование пептидных связей А6. В процессе биосинтеза белка молекулы иРНК переносят наследственную информацию 1) из цитоплазмы в ядро 2) одной клетки в другую 3)ядра к митохондриям 4) ядра к рибосомам. А7. У животных в процессе митоза в отличии от мейоза, образуются клетки 1) соматические 2) с половиной набором хромосом 3)половые 4) споровые. А8. В клетках растений, в отличие от клеток человека, животных, грибов, происходит А) выделение 2) питание 3) дыхание 4) фотосинтез А9. Фаза деления в которых, хроматиды расходятся к разным полюсам клетки 1) анафаза 2) метафаза 3) профаза 4) телофаза А10. Прикрепление нитей веретена деления к хромосомам происходит 1) Интерфаза; 2) профаза; 3) метафаза; 4) анафаза. А11. Окисление органических веществ с освобождением энергии в клетке происходит в процессе 1) Биосинтеза 2) дыхания 3) выделения 4) фотосинтеза. А12. Дочерние хроматиды в процессе мейоза расходятся к полюсам клетки в 1) Метафазе первого деления 2) Профазе второго деления 3) Анафазе второго деления 4) Телофазе первого деления

8. Какое из этих веществ является основным стройматериалом человеческой клетки?

а) углеводы;
б) белки;
в) нуклеиновые кислоты;
г) жиры.
9. В каком из вариантов ответов человек как многоуровневая и целостная живая система описывается правильно?
а) клетки - ткани - система органов - органы - целостный организм;
б) органы - клетки - ткани - система органов - целостный организм;
в) ткани - клетки - органы - целостный организм -система органов;
г) клетки - ткани - органы - система органов - целостный организм.
10. Какой процесс в организме человека называется биосинтезом?
а) распад органических соединений на неорганические соединения;
б) образование органических веществ из неорганических;
в) образование собственных белков, жиров и углеводов;
г) биосинтез для человека нехарактерен.

1. Какие вещества не относятся к органическим:

a. Белки
b. минеральные соли
c. углеводы
d. жиры
2. Кому обязана своим появлением стройная система классификации растительного и животного мира:
a. Жан Батист Ламарк
b. Карл Линней
c. Чарлз Дарвин

3. Какое оплодотворение у наземных животных:
a. Наружное
b. Внутреннее
c. Двойное

4. До каких промежуточных продуктов распадаются белки в пищеварительном тракте:
a. глицерин и жирные кислоты
b. простые углеводы
c. аминокислоты

5. Сколько хромосом содержится в половых гаметах человека:
a. 23
b. 46
c. 92
6. Какова функция хлоропластов
a. Синтез белка
b. Синтез АТФ
c. Синтез глюкозы
7. Клетки у которых есть ядро относятся к:
a. Эукариотическая клетка
b. Прокариотическая клетка
8. Организмы, создающие органические вещества в экосистеме:
a. Консументы
b. Продуценты
c. Редуценты
9. Какой клеточный органоид отвечает за выработку энергии в клетке:
a. Ядро
b. Хлоропласт
c. Митохондрия

10. Какие органоиды характерны только для растительных клеток
a. Эндоплазматическая сеть
b. Пластиды
c. Рибосомы

11. Сколько хромосом содержится в соматических клетках человека
a. 23
b. 46
c. 92
12. Какое оплодотворение у покрытосеменных растений:
a. Внутреннее

АТФ - универсальная энергетическая «валюта» клетки. Одно из наиболее удивительных «изобретений» природы - это молекулы так называемых «макроэргических» веществ, в химической структуре которых имеется одна или несколько связей, которые выполняют функцию накопителей энергии. В живой природе найдено несколько подобных молекул, но в организме человека встречается только одна из них - аденозинтрифосфорная кислота (АТФ). Это довольно сложная органическая молекула, к которой присоединены 3 отрицательно заряженных остатка неорганической фосфорной кислоты PO. Именно эти фосфорные остатки связаны с органической частью молекулы «макроэргическими» связями, легко разрушающимися при разнообразных внутриклеточных реакциях. Однако энергия этих связей не рассеивается в пространстве в виде тепла, а используется на движение или химическое взаимодействие других молекул. Именно благодаря этому свойству АТФ выполняет в клетке функцию универсального накопителя (аккумулятора) энергии, а также универсальной «валюты». Ведь почти каждое химическое превращение, происходящее в клетке, либо поглощает, либо высвобождает энергию. Согласно закону сохранения энергии, общее количество энергии, образованное в результате окислительных реакций и запасенное в виде АТФ, равно количеству энергии, которое может использовать клетка на свои синтетические процессы и выполнение любых функций. В качестве «оплаты» за возможность произвести то или иное действие клетка вынуждена расходовать свой запас АТФ. При этом следует особо подчеркнуть: молекула АТФ столь крупна, что она не способна проходить через клеточную мембрану. Поэтому АТФ, образованная в одной клетке, не может быть использована Другой клеткой. Каждая клетка тела вынуждена синтезировать АТФ Для своих нужд самостоятельно в тех количествах, в которых она необходима для выполнения ее функций.

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы - наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов - вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, - происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.

Гликолиз - весьма быстрый, но сравнительно малоэффективный процесс. Образовавшаяся в клетке после завершения реакций гликолиза пировиноградная кислота почти тут же превращается в молочную кислоту и порой (например, во время тяжелой мышечной работы) в весьма больших количествах выходит в кровь, так как это небольшая молекула, способная свободно проходить через клеточную мембрану. Такой массированный выход кислых продуктов обмена в кровь нарушает гомеостаз, и организму приходится включать специальные гомеостатические механизмы, чтобы справиться с последствиями мышечной работы или другого активного действия.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы - митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы - обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой - туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник - самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик - например, мышцы могут с максимальным усилием работать за счет КрФ не более 6-7 с. Этого обычно достаточно, чтобы запустить второй по мощности - гликолитический - источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5-2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика - в 2-3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

Особенности организации энергопродукции в различных тканях организма. Разные ткани обладают различной насыщенностью митохондриями. Меньше всего их в костях и белом жире, больше всего - в буром жире, печени и почках. Довольно много митохондрий в нервных клетках. Мышцы не обладают высокой концентрацией митохондрий, но ввиду того, что скелетные мышцы - самая массивная ткань организма (около 40 % от массы тела взрослого человека), именно потребности мышечных клеток во многом определяют интенсивность и направленность всех процессов энергетического обмена. И.А.Аршавский называл это «энергетическим правилом скелетных мышц».

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

Современное представление о процессе окислительного фосфорилирования ведет свое начало от пионерских работ Белицера и Калькара. Калькар установил, что аэробное фосфорилирование сопряжено с дыханием. Белицер подробно изучил стехиометрические отношения между сопряженным связыванием фосфата и поглощением кислорода и показал, что отношение числа молекул неорганического фосфата к числу атомов поглощенного кислорода

при дыхании равно не менее чем двум. Он же указал, что перепое электронов от субстрата к кислороду является возможным источником энергии для образования двух и более молекул АТФ на один атом поглощенного кислорода.

Донором электронов служит молекула НАД Н, и реакция фосфорилирования имеет вид

Кратко эту реакцию записывают в виде

Синтез трех молекул АТФ в реакции (15.11) происходит за счет переноса двух электронов молекулы НАД Н по цепи электронного транспорта к молекуле кислорода. При этом энергия каждого электрона понижается на 1,14 эВ.

В водной среде при участии специальных ферментов происходит гидролиз молекул АТФ

Структурные формулы молекул, входящих в реакции (15.12) и (15.13), приведены на рис. 31.

При физиологических условиях входящие в реакции (15.12) и (15.13) молекулы находятся в разных стадиях ионизации (АТФ, ). Поэтому химические символы в этих формулах следует понимать как условную запись реакций между молекулами, находящимися в разных стадиях ионизации. В связи с йтим увеличение свободной энергии AG в реакции (15.12) и ее уменьшение в реакции (15.13) зависит от температуры, концентрации ионов и от значения pH среды. При стандартных условиях эВ ккал/моль). Если ввести соответствующие поправки с учетом физиологических значений pH и концентрации ионов внутри клеток, а также обычные значения концентраций молекул АТФ и АДФ и неорганического фосфата в цитоплазме клеток, то для свободной энергии гидролиза молекул АТФ получим значение -0,54 эВ (-12,5 ккал/моль). Свободная энергия гидролиза молекул АТФ не является величиной постоянной. Она может быть неодинаковой даже в разных местах одной клетки, если эти места различаются по концентрации

Со времени появления пионерской работы Липмана (1941 г.) известно, что молекулы АТФ в клетке выполняют роль универсального кратковременного хранителя и переносчика химической энергии, используемой в большинстве процессов жизнедеятельности.

Выделение энергии в процессе гидролиза молекулы АТФ сопровождается преобразованием молекул

При этом разрыв связи, обозначенной символом приводит к отщеплению остатка фосфорной кислоты. По предложению Липмана такую связь стали называть «фосфатной связью, богатой энергией» или «макроэргической связью». Это название крайне неудачно. Оно совершенно не отражает энергетики процессов, происходящих при гидролизе. Выделение свободной энергии обусловлено не разрывом одной связи (такой разрыв всегда требует затраты энергии), а перестройкой всех молекул, участвующих в реакциях, образованием новых связей и перестройкой сольватных оболочек при реакции.

При растворении молекулы NaCl в воде образуются гидратированные ионы Выигрыш энергии при гидратации перекрывает затрату энергии при разрыве связи в молекуле NaCl. Было бы странным приписывать этот выигрыш энергии «высоко-эргичности связи» в молекуле NaCl.

Как известно, при делении тяжелых атомных ядер выделяется большая энергия, что не связано с разрывом каких-либо высоко-эргических связей, а обусловлено перестройкой осколков деления и уменьшением энергии кулоповского отталкивания между нуклонами в каждом осколке.

Справедливая критика представления о «макроэргических связях» высказывалась неоднократно . Тем не менее это представление широко внедрилось в научную литературу. Большой

Таблица 8

Структурные формулы фосфорилированных соединений: а - фосфоэноллируват; б - 1,3-дифосфоглицерат; в - креатинфосфат; - глюкозо-I-фосфат; - глюкозо-6-фосфат.

беды в этом нет, если выражение «высокоэргическая фосфатная связь» испольаовать условно, как краткое описание всего цикла преобразований, происходящих в водном растворе при соответствующем наличии других ионов, pH и т. д.

Итак, понятие энергия фосфатной связи, испольауемое биохимиками, условно характеризует разность между свободной энергией исходных веществ и свободной энергией продуктов реакций гидролиза, при которых отщепляются фосфатные группы. Это понятие нельзя путать с понятием энергии химической связи между двумя группами атомов в свободной молекуле. Последняя характеризует энергию, необходимую для разрыва свяэи.

В клетках содержится ряд фосфорилированных соединений, гидролиз которых в цитоплазме связан с выделением свободной анергии. Значения стандартных свободных энергий гидролиза некоторых из этих соединений приведены в табл. 8. Структурные формулы этих соединений изображены на рис. 31 и 35.

Большие отрицательные величины стандартных свободных анергий гидролиза обусловлены энергией гидратации отрицательно заряженных продуктов гидролиза и перестройкой их электронных оболочек. Из табл. 8 следует, что значение стандартной свободной энергии гидролиза молекулы АТФ занимает промежуточное положение между «высокоэнергетическими» (фосфоэнолпиру-нат) и «низкоэнергетическими» (глюкозо-6-фосфат) соединениями. Это одна из причин того, что молекула АТФ является удобным универсальным переносчиком фосфатных групп.

С помощью специальных ферментов молекулы АТФ и АДФ осуществляют связь между высоко- и низкоэнергетическими

фосфатными соединениями. Например, фермент пируваткиназа переносит фосфат с фосфоэнолпирувата на АДФ. В результате реакции образуется пируват и молекула АТФ. Далее с помощью фермента гексокиназа молекула АТФ может передать фосфатную группу D-глюкозе, превратив ее в глюкозо-6-фосфат. Суммарный продукт этих двух реакций сведется к преобразованию

Весьма важно, что реакции этого типа могут проходить только через промежуточный этап, в котором обязательно участвуют молекулы АТФ и АДФ.

Практическое занятие № 15.

Задание к занятию № 15.

Тема: ЭНЕРГЕТИЧЕСКИЙ ОБМЕН.

Актуальность темы.

Биологическое окисление – совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жиров и аминокислот расщепляются, в конечном счете, до углекислоты и воды, а освобождающаяся энергия запасается клеткой в виде аденозинтрифосфорной кислоты (АТФ) и затем используется в жизнедеятельности организма (биосинтез молекул, процесс деления клеток, сокращение мышц, активный транспорт, продукция тепла и др.). Врач должен знать о существовании гипоэнергетических состояний, при которых снижается синтез АТФ. При этом страдают все процессы жизнедеятельности, которые протекают с использованием энергии, запасенной в виде макроэргических связей АТФ. Наиболее распространенная причина гипоэнергетических состояний – гипоксия тканей , связанная со снижением концентрации кислорода в воздухе, нарушением работы сердечно-сосудистой и дыхательной систем, анемиями различного происхождения. Кроме того, причиной гипоэнергетических состояний могут быть гиповитаминозы , связанные с нарушением структурного и функционального состояния ферментных систем, участвующих в процессе биологического окисления, а также голодание , которое приводит к отсутствию субстратов тканевого дыхания. Кроме того, в процессе биологического окисления образуются активные формы кислорода, запускающие процессы перекисного окисления липидов биологических мембран. Необходимо знать механизмы защиты организма от данных форм (ферменты, лекарственные препараты, оказывающие мембраностабилизирующее действие – антиоксиданты).

Учебные и воспитательные цели:

Общая цель занятия: привить знания о протекании биологического окисления, в результате которого образуется до 70-8- % энергии в виде АТФ, а также об образовании активных форм кислорода и их повреждающего действия на организм.

Частные цели: уметь определять пероксидазу в хрене, картофеле; активность сукцинатдегидрогеназы мышц.



1. Входной контроль знаний:

1.1. Тесты.

1.2. Устный опрос.

2. Основные вопросы темы:

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь.

2.2. Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

2.3. Этапы обмена веществ. Биологическое окисление (тканевое дыхание). Особенности биологического окисления.

2.4. Первичные акцепторы протонов водорода и электронов.

2.5. Организация дыхательной цепи. Переносчики в дыхательной цепи (ЦПЭ).

2.6. Окислительное фосфорилирование АДФ. Механизм сопряжения окисления и фосфорилирования. Коэффициент окислительного фосфорилирования (Р/О).

2.7. Дыхательный контроль. Разобщение дыхания (окисления) и фосфорилирования (свободное окисление).

2.8. Образование токсичных форм кислорода в ЦПЭ и обезвреживание перекиси водорода ферментом пероксидазой.

Лабораторно-практические работы.

3.1. Методика определения пероксидазы в хрене.

3.2. Методика определения пероксидазы в картофеле.

3.3. Определение активности сукцинатдегидрогеназы мышц и конкурентное торможение её активности.

Выходной контроль.

4.1. Тесты.

4.2. Ситуационные задачи.

5. Литература:

5.1. Материалы лекций.

5.2. Николаев А.Я. Биологическая химия.-М.: Высшая школа, 1989., С 199-212, 223-228.

5.3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.: Медицина, 1990.С.224-225.

5.4. Кушманова О.Д., Ивченко Г.М. Руководство к практическим занятиям по биохимии.- М.: Медицина, 1983, раб. 38.

2. Основные вопросы темы.

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь .

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой.

Эта связь осуществляется в процессе обмена веществ.

Обмен веществ (метаболизм)совокупность всех реакций в организме.

Промежуточный обмен (внутриклеточный метаболизм) – включает 2 типа реакций: катаболизм и анаболизм.

Катаболизм – процесс расщепления органических веществ до конечных продуктов (СО 2 , Н 2 О и мочевины). В этот процесс включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

Процессы катаболизма в клетках организма сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате реакций катаболизма происходит выделение энергии (экзергонические реакции), которая необходима организму для его жизнедеятельности.

Анаболизм – синтез сложных веществ из простых. В анаболических процессах используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

Источниками энергии для организма являются белки, жиры и углеводы. Энергия, заключенная в химических связях этих соединений, в процессе фотосинтеза трансформировалась из солнечной энергии.

Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

АТФ является макроэргическим соединением, содержащим макроэргические связи; при гидролизе концевой фосфатной связи выделяется около 20 кдж/моль энергии.

К макроэргическим соединениям относятся ГТФ, ЦТФ, УТФ, креатинфосфат, карбамоилфосфат и др. Они используются в организме для синтеза АТФ. Например, ГТФ + АДФ à ГДФ + АТФ

Этот процесс называется субстратное фосфорилирование – экзоргонические реакции. В свою очередь все эти макроэргические соединения образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, энергия АТФ используется для совершения различных видов работ в организме:

Механической (мышечное сокращение);

Электрической (проведение нервного импульса);

Химической (синтез веществ);

Осмотической (активный транспорт веществ через мембрану) – эндергонические реакции.

Таким образом, АТФ- главный, непосредственно используемый донор энергии в организме. АТФ занимает центральное место между эндергоническими и экзергоническими реакциями.

В организме человека образуется количество АТФ, равное массе тела и за каждые 24 часа вся эта энергия разрушается. 1 молекула АТФ «живет» в клетке около минуты.

Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счет энергии окисления органических соединений. Цикл АТФ-АДФ – основной механизм обмена энергии в биологических системах, а АТФ – универсальная «энергетическая валюта».

Каждая клетка обладает электрическим зарядом, который равен

[АТФ] + ½[АДФ]

[АТФ] + [АДФ] + [АМФ]

Если заряд клетки равен 0,8-0,9, то в клетке весь адениловый фонд представлен в виде АТФ (клетка насыщена энергией и процесс синтеза АТФ не происходит).

По мере использования энергии, АТФ превращается в АДФ, заряд клетки становится равным 0, автоматически начинается синтез АТФ.